
IEE International Frequency Control Symposium 1998

Commercial Off-The-Shelf (COTS)

A Study of Plastic Encapsulated Microcircuits (PEMs) in JPL Space Hardware

Mike Sandor & Shri Agarwal

Organization

OEMA Operations A.G. Brejcha

Office 507
Electronic Parts Engineering
Kevin P. Clark, Mgr.

Administrative Staff

Electronic Parts Information Management System (EPINS)

Parts Support Ed Svendsen, Group Superv.

Radiation Effects & FA Chuck Barnes, Group Superv.

Agenda

Introduction to COTS

COTS Work Plan/Status

COTS Work for Plastic Packages

Summary

The Meaning of COTS

- "Buy and Fly"
- "Procuring via catalog part number to QML-V standards"
- "Procurement is performed without formal specification"
- "The usage of any COTS equipment does not constitute any waiver to fundamental applicable requirements"

Our Interpretation:

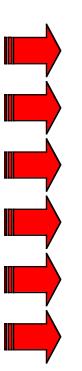
COTS are parts whose specification is <u>manufacturer</u>
-controlled as opposed to traditional "Hi-Rel" parts whose specification was <u>Government or customer-controlled</u>

Why Put COTS in Space?

- 1. The availability of COTS parts is proliferating.
- 2. COTS parts performance capabilities continue to increase (e.g. processing power & high density memories)
- 3. A new generation of leading COTS IC technologies is introduced every 3 years.
- 4. COTS parts typically cost much less than radiation hardened counterparts; by using radiation tolerant parts the cost advantage can be preserved.
- 5. Some COTS parts (plastic) have been reported to demonstrate good to excellent reliability.

JPL's Concerns About Using COTS

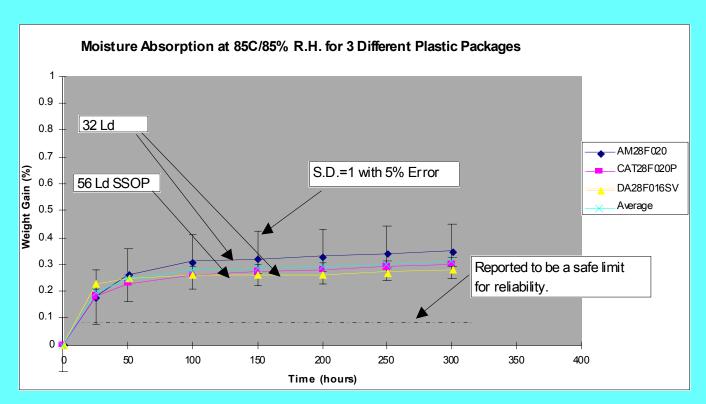
- Reliability/RH of PEMS vs Traditional Ceramic
- Non Rad Hard Designed (maybe Rad Tolerant)
- Narrow Temperature Range
- Process/Designs Change Frequently


Examples of Risk Indicators & Their Relative Costs for a Plastic Package:

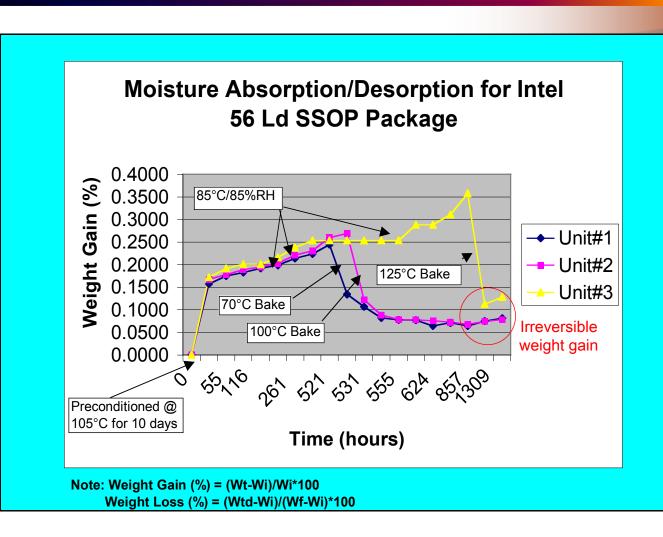
 Temperature Humidity 	Corrosion	(\$)
--	-----------	------

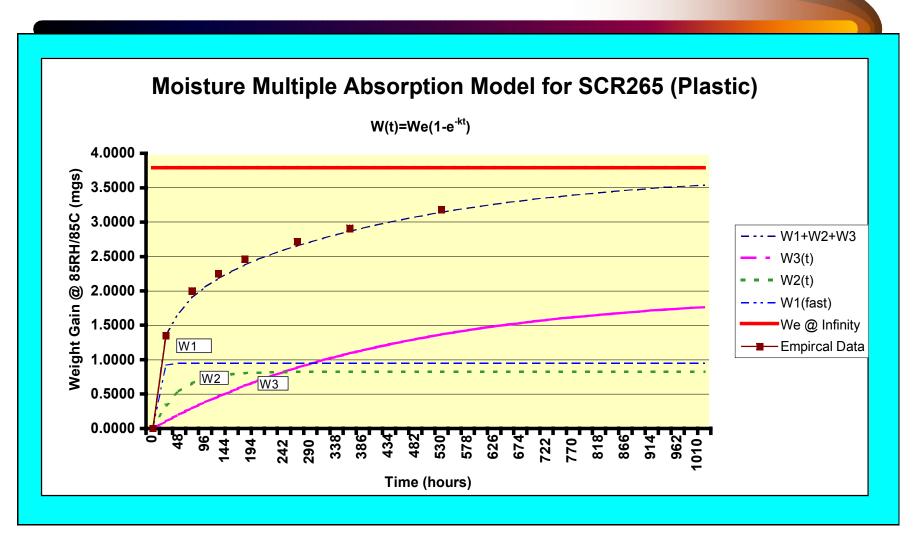
- Temperature Cycling Assembly Defects (\$)
- Moisture Absorption Popcorning (\$\$)
- Radiation TID Degradation (\$\$\$\$)
- Outgassing Condensables (\$\$)
- Glass Transition Stability (\$\$)

Work Conducted at JPL:

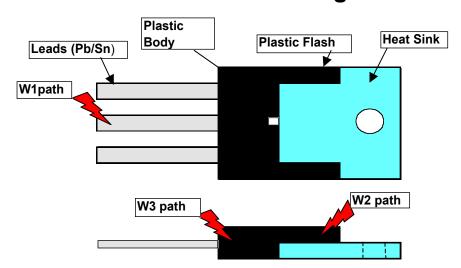


COTS Work- Plan/Status


Plastic Part Family LPSEP Known Good Die Packages Evaluations Vendor Moisture Flash Memory Characterization Absorption Surveys Vendor A/D & D/A Outgassing Reliability Screens Logic Radiation Radiation User Risk Completed Delamination Others **Planning** In Progress



Conclusion: Most if not all plastic parts will absorb moisture >> 0.1% weight gain.

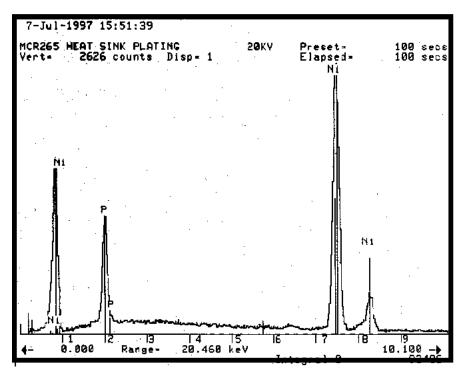


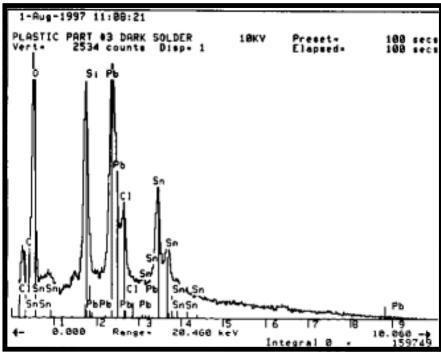
85%RH/85°C Moisture Absorption Mechanisms for SCR265

W1(t): Fast <u>Irreversible</u> Weight Gain ≤ 24 hours (~1mg)

W2(t): Intermediate Reversible Weight Gain, 80 to 140 hours

W3(t): Slowest Reversible Weight Gain, Reaches We @ t=∞ SCR265 Package




Nickel Plated Heatsink Shows No Oxidation

Post 85%RH/85°C for SCR265

Leads Show Extreme Oxidation

Conclusion: Weight gain is solely attributed to oxidation of leads. The internal chip has miniscule Al area available for oxidation because of Cu intermetallic bonding to the Al.

Cool & Dry Test
Chamber

Weigh Specimen
& CP for TML

50% RH @ 25C for 24 hrs + Weighed for WVR

Ref: ASTM E595-93

Outgassing Results of Plastic Packages

Material	MCR		7612382FBA, E24, DA28F016SV, K8055, U6240332		AM28F020-150PC, 9618FBB			CSI, CAT28F020F, 1-15 09550B				
Part	Motorola SCR		Intel 16 M Flash Memory			AMD 2M Flash Memory			Catalyst 2M Flash Memory			
Sample No.	5	6		7	8	а	9	10		11	24	
WT. Loss %	0.45	0.46	0.45	0.23	0.22	0.22	0.41	0.45	0.43	0.40	0.41	0.40
Water Vapor Recovered, WVR,	0.28	0.25	0.26	0.14	0.11	0.12	0.19	0.17	0.18	0.21	0.18	0.19
%TML (WT, LOSS- WVR) %	0.17	0.21	0.19	0.09	0.11	0.10	0.22	0.28	0.25	0.19	0.23	0.21
CVCM %	0.04	0.08	0.06	0.02	0.01	0.01	0.03	0.05	0.04	0.04	0.04	0.04
DEPOSIT on CP	Opaque		Negligible		Opaque		Opaque					
FTIR Results	Amine cured epoxy		Anhydride cured epoxy		Amine cured epoxy		Amine cured epoxy					

Conclusion: All materials passed. These tests are suited for lot-to-lot comparisons, tracking manufacturing continuity/changes, and measuring absorbed moisture at a known environment.

Radiation of Plastic Parts

Moisture Absorption / Bake for Intel DA28F016SV in Plastic Package

(0.6 \(\mu \)m ETOX IV Process Technology)

Conditions: Test Temperature = 25 \(^1\)C, Vdd = 5.0V, Vpp = 5.0V

Dose rate = 25r/s

TID Response of Intel 16M Flash Memory

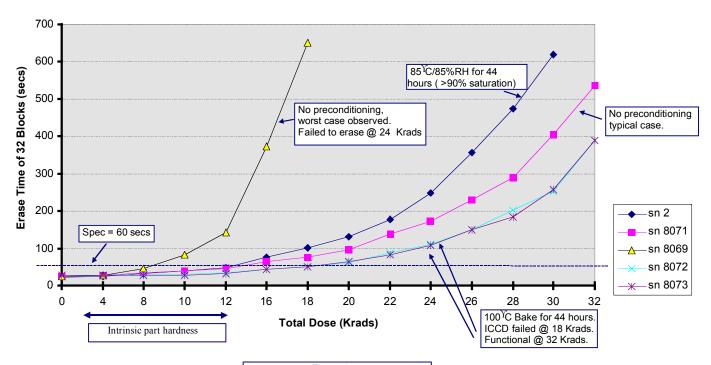


Figure 1 Jet Propulsion Laboratory Electronic Parts Engineering Office 507

In Summary

- Using plastic parts without understanding their pedigree can lead to mission delay or worst Mission Failure
- A methodology is in place in Office 507 to help JPL users of plastic parts ascertain their risk and acceptance for Space Application
- Work is underway in Office 507 to evaluate all risk factors using COTS parts (quality, reliability, radiation, package, and device performance)

For Further Information Contact:

Mike Sandor Shri Agarwal

or 818-795-4928 x

818-354-0681 203

Technical Contributors:

Ed Cuddihy - Jet Propulsion Laboratory Duc Nguyen - Jet Propulsion Laboratory Scott McDaniel - DPA Components, Inc.

Plastic Parts Successfully Used For Mars Pathfinder:

16 Mbit DRAM Used in Pathfinder Flight Computer

FETs; ASIC & Microcontroller Used in Modem for Lander and Rover

Passed 1000 Hours Life Test on Mars!